Analyticity Requirement for Regge Poles and Backward Unequal-Mass
Scattering II

K. J. Kim and Y. S. Kim*

Center for Theoretical Physics, Department of Physics and Astronomy,
University of Maryland College Park, Maryland, USA.

ABSTRACT

We evaluate exactly the modified Regge amplitude for the backward unequal-mass scattering. This

gives the Regge behavior \(u'' \) at \(s = 0 \) and in its neighborhood. We then consider a possibility that a fixed

pole contribution is completely eliminated by a counteracting Regge amplitude. It is shown that, if

such an amplitude is added, the total Regge amplitude vanishes at \(s = 0 \).

In a previous paper, \(^{12}\) a Regge amplitude satisfying the Mandelstam representation is

constructed for the backward unequal-mass scattering. Based on the two lowest-order coefficients in a

power series expansion in \(s \), it was shown that the leading term gives the Regge behavior \(u'' \) at \(s = 0 \) and in its neighborhood including the region in which the cosine of the backward scattering angle is bounded. It was shown also that the coefficients of the non-leading terms do not give rise to a singularity of the Regge amplitude.

In this paper, we obtain the exact \(s \) dependence of the asymptotic form of the Regge amplitude

for large \(u \), that is, we compute the coefficients of the \(u'' \), \(u''' \), and \(u^{(0)'} \) terms exactly.

We confirm the assertions made in the previous paper.

\(^{13}\) We then consider a possibility of eliminating the fixed power term \(u^{(0)} \) by introducing another Regge pole with \(u^{(0)'} \), \(u^{(0)'} \), and \(u^{(0)'} \) terms. It is shown that this elimination procedure leads to a vanishing total Regge amplitude at \(s = 0 \).

In the previous paper, \(^{13}\) it was shown that the analyticity approach leads to the following expression for the modified Regge amplitude.

\[
K(s, u) = \frac{1}{\pi} \int_{s_0} Im R(s', u) ds',
\]

(1)

where

\[
R(s', u) = -\pi\left(-q'' \right)^2 \frac{P_{\pi N}}{2q''^2} \times \left(-1 - \frac{u - r''/s'}{r''} \right),
\]

\[
q'' = \frac{s' - (m + \mu)^2}{4s'},
\]

and

\[
s_0 = (m + \mu)^2.
\]

m and \(\mu \) are the nucleon and pion masses respectively. As in all previous papers on this subject we are dealing here with pion-nucleon backward scattering.

The Regge amplitude \(R(s', u) \), in addition to the physical cut, has a cut running from \(s' = 0 \) to \(r''/u \) in the complex \(s' \) plane. Therefore the above dispersion integral can be replaced by a contour integral which encloses the pole of the integrand at \(s' = s \) and a cut running from 0 to \(r''/u \) counterclockwise.

\[
K(s, u) = \frac{1}{\pi} \int_C ds' \frac{R(s', u)}{s' - s}.
\]

(2)

\(C \) is the contour described above. We can choose this contour in such a way that the following conditions are satisfied:

*Supported in part by the National Science Foundation under Grant NSF GP 6036.
(1) $a(s')$ and $\gamma(s')$ are analytic within the contour.

(2) $q^s = r^s/4s'$ along the contour.

(3) $P_{s'u'} \left(1 - \frac{2us'}{r^2} \right) = \frac{1}{\sqrt{\pi}} \frac{\Gamma[a(s') + 1/2]}{\Gamma[a(s') + 1]} \times \left[u^{s'} - \frac{a(s')r^2}{2s'} u^{s'-1} \right]$ along the contour.

Then

$$R(s', u') = -\sqrt{\pi} \gamma(s') \frac{\Gamma[a(s') + 1/2]}{\Gamma[a(s') + 1]} \left[u^{s'} - \frac{a(s')r^2}{2s'} u^{s'-1} \right].$$

(4)

According to the above expression for $R(s', u')$, the integrand of Eq. (2) has poles at $s'=s$ and $s'=0$. Now, by taking residues we obtain

$$K(s, u) = \frac{\sqrt{\pi} \gamma(s)}{\Gamma[a(s') + 1]} \left[u^{s'} - \frac{a(s')r^2}{2s'} u^{s'-1} \right].$$

The leading term in Eq. (5) is $u^{s'}$ as has been expected. The above $K(s, u)$ also gives a fixed-pole contribution $\frac{1}{s} u^{s'-1}$. This term has a pole at $s=0$. But this singularity is canceled by the $\frac{1}{s} u^{s'-1}$ term which also exists in the right hand side of Eq. (5). Unfortunately, Freedman et al. did not realize that these poles cancel each other at $s=0$ and asserted the existence of a daughter trajectory which will remove the singularity of the fixed power term. We may mention further that $K(s, u)$ of Eq. (5) reduces to that of the previous paper in the small s limit.

It is by now very clear that the daughter trajectory of Freedman et al. type does not exist. But, let us consider a possibility of eliminating completely the fixed-pole contribution by introducing a counteracting Regge pole, that is, we construct a new amplitude $\tilde{K}(s, u)$ with the parameters $\tilde{a}(s)$ and $\tilde{\gamma}(s)$, add to the original amplitude:

$$K_{tot}(s, u) = K(s, u) + \tilde{K}(s, u),$$

and insist that $K_{tot}(s, u)$ contains no fixed pole terms. Then from Eq. (5) it is clear that $\tilde{a}(0) = \tilde{a}(0)$. In other words, the two trajectories must cross each other at $s=0$. This further leads to $\tilde{\gamma}(0) = -\tilde{\gamma}(0)$. Then $K_{tot}(s, u) = 0$ at $s=0$. This total amplitude does not have a Regge behavior at $s=0$.

In this paper, we first evaluated exactly the coefficients of the $u^{s'}$, $u^{s'-1}$ and $u^{s'-1}$ terms. Using these coefficients we have shown that an attempt to eliminate the fixed power term by another Regge pole leads to a vanishing total amplitude at $s=0$.

REFERENCES

(1) Y. S. Kim and M. Resnikoff, Phys. Rev. 169, Sec. 5 (May, 1968) (to be published)